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Abstract

We present a result that would seem to have remarkable implications for the design
of transformers. We observe that in a trained Gemma3 model, 27% of the variance
in individual key-query attention coefficients can be attributed to the absolute
position of the query in the context window, roughly the same as an untrained
model. Training thus produces no move toward translation equivariance.

The elements of language—words, phrases, and sentences—have intrinsic meaning apart from their
position in a text. The phrase “San Diego” can be understood whether it is at the beginning or end
of a sentence. “The conference is in San Diego” states a fact that does not depend on whether it is
presented in isolation or following “I am looking forward to the conference.” Robust understanding by
language models requires translation equivariance: shifting the position of a text string in the context
window should not intrinsically alter how that text is interpreted. Of course, relevant preceding
context can shade meaning, but merely moving a sentence in the window from, say, position 47 to
position 98 should not alter how it is understood. Without translation equivariance, models would
need to learn what “San Diego” means from scratch for every position within the context window
and language understanding would be extremely brittle.

Transformers appear to have an inductive bias that favors translation equivariance. The query-
key attention mechanism itself is agnostic to the order of preceding tokens. Position codes are
incorporated to represent token ordering and distance. Commonly used position codes encode relative
position—the number of positions between tokens—not absolute position—the index of a token
within the context window (Ke et al., 2020; Huang et al., 2020; Shaw et al., 2018; Su et al., 2024).

We analyze translation equivariance by examining attention patterns in a transformer. Specifically, we
characterize the persistence of a token on influencing subsequent processing in terms of the attention
allocated to its key from queries that follow. To formalize, we use the notation at,∆t,l,h to denote the
attention coefficient associated with a key at position t and a query at position t+∆t in layer l and
head h of the transformer. If a model exhibits translation equivariance, at,∆t,l,h will not depend on t.

We conducted analyses using a pretrained Gemma3-500m model (Gemma Team et al., 2025) run on
C4 eval sequences with a 1024-token context window. Figure 1a plots the persistence of a key as a
function of ∆t, averaged across test sequences, t, l, and h. The curve is well fit by a power function:
the coefficient of determination (R2) is 0.933. There is of course variability across tokens, layers,
and heads: Figure 1b shows typical curves for individual heads of a randomly selected key and layer.
The decrease in attention with ∆t is still evident even for single heads and single instances.

Although the mean persistence curve is well characterized by a power function, when we condition
the analysis on the absolute position of the key (t), Figure 1c indicates that the early positions in the
context window are best fit by a power function (purple) and later positions by an exponential (red).

This mysterious pattern has a simple explanation. Suppose that a model distributes its causal attention
uniformly. The query at position t+∆t will attend to itself and the t+∆t preceding tokens (assuming
zero indexing), leading to an attention coefficient of 1/(t+∆t+ 1) for each key. We refer to the
function obtained by conditioning on t and varying ∆t as the uniform causal prior. When we compare



MOZER

(a)

0 100 200 300 400 500
t

0.002

0.004

0.006

0.008

0.010

M
ea

n 
At

te
nt

io
n

exp 0.006e 0.004 t, R2=0.845
pwr 0.016 t 0.347, R2=0.933

(b)

0 100 200 300 400 500
t

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
ea

n 
At

te
nt

io
n

layer 14, head 0
layer 14, head 1
layer 14, head 2
layer 14, head 3

(c)

0 100 200 300 400 500

Absolute Key Position
0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
2

exponential fit
power fn fit
uniform causal fit (d)

Figure 1: (a) Attention coefficient as a function of key-query distance (∆t), averaged over documents,
key position t, layers l, and heads h. (b) Attention coefficient as a function of ∆t for a
speciific document, layer l, and head h, averaged over key positions t. (c) Quality of fit
(coefficient of determination, R2), as a function of t, between persistence function and
exponential, power function, and the uniform causal prior, (t+∆t+ 1)−1. (d) Scatterplot
of observed attention coefficients versus uniform causal prior.

this parameter-free curve to our persistence function, we obtain a better fit for every key position t
(cyan curve of Figure 1c) than either exponential or power functions, both having two free parameters.

This result indicates that even after training, the transformer still distributes its attention quite widely,
at least for aggregated attention across layers, heads, and tokens. Figure 1b suggests that the same
pattern is observed for individual instances (i.e., individual layers, heads, and tokens). To obtain
direct evidence, we measure the fraction of variance explained in the attention coefficients by the
query position (t+∆t) for individual instances. Figure 1d is a scatterplot of attention coefficients,
at,∆t,l,h, sampled over all documents, t, ∆t, l, and h, versus the causal attention prior, 1/(t+∆t+1).
To capture the dynamic range, we use a log-log plot and obtain a coefficient of determination, R2, of
0.269 for the log values. (The non-log values produce R2 = 0.568, but because this value is inflated
by a few outliers, we adopt the more conservative log-based R2.) To underscore this result, if you pick
a random token in a random layer and a random attention head, over one quarter of the variance in
the attention coefficient is due to the absolute position of the query, independent of token content.

Contrasting with an untrained model with zero weight initialization, we would obtain R2 = 1.0;
with actual Gemma initialization, we obtain R2 = 0.269, the same as the trained model. Thus, the
training process barely has an effect on narrowing the distribution of attention to a query. One might
well have imagined that a model would learn to focus on the local context most of the time, which
would make the absolute query position irrelevant—exact translation equivariance—and would yield
an R2 closer to 0.

Our findings have yet to be evaluated on other transformer architectures. We conjecture they will
behave similarly because training must start from a roughly uniform attention distribution in order to
initially learn to detect relevant context. And with a sufficiently overparameterized model, it appears
that solutions are found without narrowing the focus of attention. It remains to be determined whether
this property is detrimental to transformer generalization, and if so, what can be done to mitigate the
problem. Solutions include local attention windows (currently in Gemma, though the locality spans
the 1024 tokens context we studied here) and top-k attention mechanisms, possibly decreasing k over
the course of training, and attention normalization schemes (e.g., Miller, 2023).
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